organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-(2-Chlorophenyl)-2-hydroxyethyl]-(isopropyl)ammonium 4-hydroxybenzoate

Ling Zhou, Yang Guang Qi, Ge Zhang, Yu Yun Xu and Hai Feng*

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: fenghai289289@163.com

Received 1 December 2010; accepted 9 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 18.9.

The title molecular salt, C₁₁H₁₇ClNO⁺·C₇H₅O₃⁻, was obtained by the reaction of racemic clorprenaline and 4-hydroxybenzoic acid. In the crystal, the components are connected by $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds, resulting in a twodimensional hydrogen-bonded network.

Related literature

For related structures, see: Takwale & Pant (1971); Tang et al. (2009). For hydrogen bonding, see: Feng et al. (2010).

4) Å

(4) Å (7) Å

Experimental

Crystal data

erystat aata	
$C_{11}H_{17}CINO^+ \cdot C_7H_5O_3^-$	a = 9.4033 (
$M_r = 351.82$	b = 12.2591
Monoclinic, $P2_1/n$	c = 15.9290

$\beta = 96.144 \ (1)^{\circ}$
V = 1825.68 (13) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.894, \ T_{\max} = 0.953$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 219 parameters $wR(F^2) = 0.110$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ 4131 reflections

Table 1	
Hydrogen-bond geometry (Å, °)	

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1 B ···O2	0.90	1.91	2.8090 (18)	177
$N1 - H1A \cdots O3^{1}$	0.90	1.87	2.7671 (18)	178
$O1 - H101 \cdots O2^{i}$	0.82	1.94	2.7568 (16)	174
$O4-H401\cdots O3^n$	0.82	1.86	2.6601 (18)	165

 $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.025$

 $0.50 \times 0.38 \times 0.21 \text{ mm}$

17614 measured reflections

4131 independent reflections 2891 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the Zhejiang Science and Technology Department Foundation of China (grant No. 2007 C21127) and the Key Scientific and Technological Research Project of Science and Technology Department of Zhejiang Province of China (grant No. 2008 C12051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2076).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Feng, H., Xing, B. T., Huang, X., Zhou, Y. J. & Song, Y. (2010). Acta Cryst. E66, 02605
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, **ŪSA**
- Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takwale, M. G. & Pant, L. M. (1971). Acta Cryst. B27, 1152-1158.
- Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, 01501.

supplementary materials

Acta Cryst. (2011). E67, o192 [doi:10.1107/S1600536810051536]

[2-(2-Chlorophenyl)-2-hydroxyethyl](isopropyl)ammonium 4-hydroxybenzoate

L. Zhou, Y. G. Qi, G. Zhang, Y. Y. Xu and H. Feng

Comment

A recent study reports the structure of *N*-[2-(2-chlorophenyl)-2-hydroxyethyl]- propan-2-aminium-4-methylbenzoate (Feng *et al.*, 2010), which was synthesized by *p*-Toluic acid and clorprenaline (Tang *et al.*, 2009). In the present study, reaction of 4-Hydroxybenzoic acid instead of *p*-Toluic acid with racemic clorprenaline yields the title compound, (I) following a similar synthetic procedure.

In (I), the clorprenaline molecule and the 4-Hydroxybenzoic acid molecule are linked to each other by the N—H···O and the O—H···O hydogen bonds (Fig. 1 & Table 1). The clorprenaline in (I) are twisted moderately as compared with those of other compounds. The C(12)-O(2) distance of 1.257 (2)Å is much shorter than the similar distance of 1.292 (8)Å (Takwale *et al.*, 1971). The C(9)-N(1) distance of 1.509 (2)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang *et al.*, 2009*b*) and comparable to the similar bond distance of 1.503 (2)Å (Feng *et al.*, 2010). The C(1)—C(6)—C(7)—C(8) torsion angle of 95.72 (19)° is larger than the value of the C(7)—C(2)—C(1)—C(8) torsion angle of 91.9 (2)° (Tang *et al.*, 2009).

Experimental

Racemic clorprenaline was prepared from clorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Clorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol-water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic clorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (6 ml) and then 4-Hydroxybenzoic acid (0.29 g, 0.0023 mol) was added. The mixture was dissolved by stirring for 1h at room temperature. The resulting solution was concentrated at ambient temperature. Colorless crystals of (I) were separated from the solution in about 68% yield after two day.

Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 (methyl) 0.82 (hydroxyl) and N—H=0.90 Å, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figures

Fig. 1. The cell unit of (I) with atom labels, showing 50% probability displacement ellipsoids.

[2-(2-Chlorophenyl)-2-hydroxyethyl](isopropyl)ammonium 4-hydroxybenzoate

F(000) = 744

 $\theta = 3.1 - 27.4^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

Chunk, colorless $0.50 \times 0.38 \times 0.21 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.280 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12291 reflections

Crystal data

C₁₁H₁₇ClNO⁺·C₇H₅O₃⁻⁻ $M_r = 351.82$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.4033 (4) Å b = 12.2591 (4) Å c = 15.9290 (7) Å $\beta = 96.144$ (1)° V = 1825.68 (13) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer	4131 independent reflections
Radiation source: rolling anode	2891 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.894, T_{\max} = 0.953$	$l = -20 \rightarrow 20$
17614 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 + 0.8632P]$ where $P = (F_o^2 + 2F_c^2)/3$
4131 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
219 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.62065 (7)	0.20187 (5)	0.20512 (3)	0.0746 (2)
O2	0.41212 (13)	0.41383 (9)	0.58832 (8)	0.0428 (3)
03	0.59219 (14)	0.46948 (9)	0.67954 (8)	0.0462 (3)
O4	0.72015 (17)	-0.03918 (9)	0.68325 (9)	0.0606 (4)
H401	0.7879	-0.0416	0.7202	0.091*
01	0.64832 (15)	0.37003 (10)	0.44750 (9)	0.0502 (3)
H101	0.6332	0.4338	0.4338	0.075*
N1	0.34605 (15)	0.35386 (10)	0.41842 (9)	0.0364 (3)
H1A	0.3652	0.4102	0.3852	0.044*
H1B	0.3687	0.3748	0.4723	0.044*
C17	0.7690 (2)	0.15336 (13)	0.68657 (10)	0.0398 (4)
H17	0.8653	0.1407	0.7036	0.048*
C13	0.57588 (18)	0.28014 (12)	0.64942 (10)	0.0352 (4)
C6	0.68166 (18)	0.20139 (13)	0.37627 (11)	0.0387 (4)
C7	0.58728 (18)	0.30067 (13)	0.38234 (11)	0.0377 (4)
H7	0.5787	0.3401	0.3285	0.045*
C8	0.44059 (18)	0.26082 (12)	0.40065 (11)	0.0379 (4)
H8A	0.3967	0.2201	0.3525	0.045*
H8B	0.4511	0.2122	0.4489	0.045*
C12	0.52260 (19)	0.39509 (12)	0.63789 (10)	0.0364 (4)
C18	0.71869 (19)	0.25922 (13)	0.67590 (10)	0.0373 (4)
H18	0.7817	0.3172	0.6867	0.045*
C16	0.6755 (2)	0.06630 (13)	0.67183 (11)	0.0419 (4)
C1	0.7039 (2)	0.15117 (15)	0.30082 (12)	0.0475 (4)
C5	0.7444 (2)	0.15316 (15)	0.45040 (13)	0.0485 (4)
Н5	0.7312	0.1846	0.5021	0.058*
C9	0.18745 (19)	0.33141 (15)	0.40517 (12)	0.0459 (4)
Н9	0.1636	0.3057	0.3471	0.055*
C14	0.4843 (2)	0.19169 (14)	0.63267 (12)	0.0451 (4)
H14	0.3886	0.2039	0.6138	0.054*
C15	0.5339 (2)	0.08564 (14)	0.64370 (13)	0.0499 (5)
H15	0.4715	0.0274	0.6321	0.060*
C4	0.8256 (2)	0.05966 (16)	0.44857 (16)	0.0592 (6)
H4	0.8649	0.0280	0.4988	0.071*
C2	0.7882 (2)	0.05865 (17)	0.29803 (16)	0.0620 (6)
H2	0.8036	0.0276	0.2465	0.074*
C3	0.8488 (2)	0.01326 (17)	0.37280 (18)	0.0661 (6)
Н3	0.9053	-0.0489	0.3718	0.079*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.1482 (2)	0.2436 (2)	0.46424 (17)	0.0748 (7)
H10A	0.2010	0.1784	0.4549	0.112*
H10B	0.0476	0.2288	0.4540	0.112*
H10C	0.1709	0.2673	0.5215	0.112*
C11	0.1090 (3)	0.4372 (2)	0.4154 (2)	0.0839 (8)
H11A	0.1381	0.4901	0.3761	0.126*
H11B	0.1313	0.4639	0.4719	0.126*
H11C	0.0079	0.4251	0.4046	0.126*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0952 (5)	0.0856 (4)	0.0451 (3)	0.0206 (3)	0.0172 (3)	0.0027 (3)
02	0.0505 (7)	0.0338 (6)	0.0419 (7)	0.0054 (5)	-0.0060 (6)	-0.0023 (5)
O3	0.0609 (8)	0.0268 (6)	0.0473 (7)	-0.0027 (5)	-0.0103 (6)	-0.0025 (5)
O4	0.0820 (11)	0.0254 (6)	0.0667 (10)	0.0029 (6)	-0.0273 (8)	-0.0004 (6)
01	0.0550 (8)	0.0324 (6)	0.0602 (8)	-0.0013 (6)	-0.0078 (6)	-0.0053 (6)
N1	0.0410 (8)	0.0314 (7)	0.0366 (7)	0.0006 (6)	0.0029 (6)	-0.0031 (6)
C17	0.0463 (10)	0.0329 (8)	0.0377 (9)	0.0015 (7)	-0.0069 (7)	-0.0017 (7)
C13	0.0452 (10)	0.0277 (7)	0.0317 (8)	-0.0013 (7)	-0.0004 (7)	0.0013 (6)
C6	0.0362 (9)	0.0330 (8)	0.0478 (10)	-0.0001 (7)	0.0083 (7)	0.0011 (7)
C7	0.0426 (10)	0.0292 (8)	0.0409 (9)	0.0018 (7)	0.0033 (7)	0.0008 (7)
C8	0.0439 (10)	0.0257 (7)	0.0440 (9)	0.0014 (7)	0.0044 (7)	-0.0013 (7)
C12	0.0461 (10)	0.0297 (8)	0.0333 (8)	-0.0007 (7)	0.0035 (7)	0.0009 (6)
C18	0.0456 (10)	0.0276 (8)	0.0372 (9)	-0.0044 (7)	-0.0020(7)	-0.0010 (6)
C16	0.0589 (11)	0.0255 (8)	0.0384 (9)	0.0002 (7)	-0.0083 (8)	0.0015 (6)
C1	0.0470 (11)	0.0449 (10)	0.0527 (11)	0.0026 (8)	0.0147 (9)	0.0029 (8)
C5	0.0493 (11)	0.0415 (10)	0.0539 (11)	0.0042 (8)	0.0023 (9)	0.0009 (8)
C9	0.0372 (10)	0.0539 (11)	0.0459 (10)	-0.0020 (8)	0.0017 (8)	-0.0062 (8)
C14	0.0439 (10)	0.0347 (9)	0.0543 (11)	-0.0052 (7)	-0.0062 (8)	0.0043 (8)
C15	0.0568 (12)	0.0294 (8)	0.0605 (12)	-0.0104 (8)	-0.0088 (9)	0.0036 (8)
C4	0.0524 (12)	0.0464 (11)	0.0770 (15)	0.0114 (9)	-0.0012 (11)	0.0074 (10)
C2	0.0587 (13)	0.0552 (12)	0.0765 (15)	0.0088 (10)	0.0275 (12)	-0.0125 (11)
C3	0.0521 (13)	0.0443 (11)	0.1031 (19)	0.0147 (9)	0.0138 (13)	-0.0011 (12)
C10	0.0536 (13)	0.0820 (16)	0.0902 (19)	-0.0165 (12)	0.0137 (13)	0.0151 (14)
C11	0.0480 (13)	0.0737 (16)	0.131 (2)	0.0158 (12)	0.0143 (15)	-0.0056 (16)

Geometric parameters (Å, °)

Cl1—C1	1.751 (2)	C8—H8B	0.9700
O2—C12	1.257 (2)	C18—H18	0.9300
O3—C12	1.2678 (19)	C16—C15	1.379 (3)
O4—C16	1.3656 (19)	C1—C2	1.387 (3)
O4—H401	0.8200	C5—C4	1.380 (3)
O1—C7	1.415 (2)	С5—Н5	0.9300
O1—H101	0.8200	C9—C10	1.502 (3)
N1—C8	1.492 (2)	C9—C11	1.510 (3)
N1—C9	1.509 (2)	С9—Н9	0.9800
N1—H1A	0.9000	C14—C15	1.386 (2)

N1—H1B	0.9000	C14—H14	0.9300
C17—C18	1.385 (2)	C15—H15	0.9300
C17—C16	1.387 (2)	C4—C3	1.372 (3)
С17—Н17	0.9300	C4—H4	0.9300
C13—C18	1.388 (2)	C2—C3	1.381 (3)
C13—C14	1.392 (2)	С2—Н2	0.9300
C13—C12	1.500 (2)	С3—Н3	0.9300
C6—C1	1.386 (3)	C10—H10A	0.9600
C6—C5	1.394 (3)	C10—H10B	0.9600
C6—C7	1.515 (2)	C10—H10C	0.9600
С7—С8	1.521 (2)	C11—H11A	0.9600
С7—Н7	0.9800	C11—H11B	0.9600
C8—H8A	0.9700	C11—H11C	0.9600
C16—O4—H401	109.5	C6—C1—Cl1	120.15 (14)
C7—O1—H101	109.5	C2—C1—Cl1	117.77 (16)
C8—N1—C9	115.73 (13)	C4—C5—C6	121.31 (19)
C8—N1—H1A	108.3	С4—С5—Н5	119.3
C9—N1—H1A	108.3	С6—С5—Н5	119.3
C8—N1—H1B	108.3	C10-C9-C11	113.15 (19)
C9—N1—H1B	108.3	C10—C9—N1	110.40 (16)
H1A—N1—H1B	107.4	C11—C9—N1	108.36 (16)
C18—C17—C16	119.89 (16)	С10—С9—Н9	108.3
C18—C17—H17	120.1	С11—С9—Н9	108.3
C16—C17—H17	120.1	N1—C9—H9	108.3
C18—C13—C14	118.20 (15)	C15—C14—C13	120.90 (17)
C18—C13—C12	120.69 (14)	C15—C14—H14	119.5
C14—C13—C12	121.09 (15)	C13-C14-H14	119.5
C1—C6—C5	117.18 (16)	C16-C15-C14	120.15 (16)
C1—C6—C7	123.76 (16)	C16—C15—H15	119.9
C5—C6—C7	118.97 (16)	C14—C15—H15	119.9
O1—C7—C6	109.57 (14)	C3—C4—C5	120.2 (2)
O1—C7—C8	110.94 (14)	C3—C4—H4	119.9
C6—C7—C8	107.68 (13)	С5—С4—Н4	119.9
O1—C7—H7	109.5	C3—C2—C1	119.1 (2)
С6—С7—Н7	109.5	С3—С2—Н2	120.5
С8—С7—Н7	109.5	C1—C2—H2	120.5
N1—C8—C7	111.22 (13)	C4—C3—C2	120.11 (19)
N1—C8—H8A	109.4	С4—С3—Н3	119.9
С7—С8—Н8А	109.4	С2—С3—Н3	119.9
N1—C8—H8B	109.4	С9—С10—Н10А	109.5
С7—С8—Н8В	109.4	C9—C10—H10B	109.5
H8A—C8—H8B	108.0	H10A—C10—H10B	109.5
O2—C12—O3	122.88 (15)	C9—C10—H10C	109.5
O2—C12—C13	119.43 (14)	H10A-C10-H10C	109.5
O3—C12—C13	117.69 (15)	H10B—C10—H10C	109.5
C17—C18—C13	121.13 (15)	C9—C11—H11A	109.5
C17—C18—H18	119.4	C9—C11—H11B	109.5
C13—C18—H18	119.4	H11A—C11—H11B	109.5
O4—C16—C15	118.57 (15)	C9—C11—H11C	109.5

supplementary materials

O4—C16—C17	121.75 (17)	H11A—C11—H11C	109.5
C15-C16-C17	119.67 (15)	H11B—C11—H11C	109.5
C6—C1—C2	122.05 (19)		
C1—C6—C7—O1	-143.52 (17)	C7—C6—C1—C2	-178.28 (18)
C5—C6—C7—O1	40.1 (2)	C5-C6-C1-Cl1	176.36 (14)
C1—C6—C7—C8	95.72 (19)	C7—C6—C1—Cl1	-0.1 (2)
C5—C6—C7—C8	-80.64 (19)	C1—C6—C5—C4	0.3 (3)
C9—N1—C8—C7	157.85 (14)	C7—C6—C5—C4	176.88 (17)
O1—C7—C8—N1	52.93 (18)	C8—N1—C9—C10	62.5 (2)
C6—C7—C8—N1	172.83 (14)	C8—N1—C9—C11	-173.03 (18)
C18—C13—C12—O2	155.55 (16)	C18—C13—C14—C15	1.2 (3)
C14—C13—C12—O2	-23.4 (3)	C12—C13—C14—C15	-179.77 (17)
C18—C13—C12—O3	-24.7 (2)	O4-C16-C15-C14	178.98 (18)
C14—C13—C12—O3	156.32 (17)	C17-C16-C15-C14	-1.9 (3)
C16-C17-C18-C13	-0.9 (3)	C13-C14-C15-C16	0.2 (3)
C14-C13-C18-C17	-0.9 (3)	C6—C5—C4—C3	1.3 (3)
C12-C13-C18-C17	-179.87 (15)	C6—C1—C2—C3	1.8 (3)
C18—C17—C16—O4	-178.65 (17)	Cl1—C1—C2—C3	-176.45 (17)
C18—C17—C16—C15	2.3 (3)	C5—C4—C3—C2	-1.4 (3)
C5—C6—C1—C2	-1.9 (3)	C1—C2—C3—C4	-0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$
N1—H1B…O2	0.90	1.91	2.8090 (18)	177
N1—H1A···O3 ⁱ	0.90	1.87	2.7671 (18)	178
O1—H101···O2 ⁱ	0.82	1.94	2.7568 (16)	174
O4—H401···O3 ⁱⁱ	0.82	1.86	2.6601 (18)	165

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2.

